Capacitive imaging for adhesive bonds and quality evaluation

Author:

Huang Xuhui1ORCID,Hamilton Ciaron1,Li Zonglin1,Udpa Lalita1,Udpa Satish S.1,Deng Yiming1

Affiliation:

1. Nondestructive Evaluation Laboratory, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

Abstract

Defective adhesive bonds pose significant threats towards structural integrity due to reduced joint strength. The nature of the adhesion of two solids remains poorly understood since the adhesion phenomenon is relevant to so many scientific and technological areas. A concept that has been gaining our attention from the perspective of non-destructive testing is the properties discontinuity of the adhesion. Discontinued properties depend significantly on the quality of the interface that is formed between adhesive and substrate. In this research, discontinued electrical properties at the interface are considered. The simplified model is free from multidisciplinary knowledge of chemistry, fracture mechanics, mechanics of materials, rheology and other subjects. From a practical standpoint, this emphasizes the need to establish a good relationship between electrical properties of adhesive bonds and corresponding measurements. Capacitive imaging (CI) is a technique where the dielectric property of an object is determined from external capacitance measurements. Thus, it is potentially promising since adhesive and substrate differ in terms of dielectric property. At the interface between adhesive and substrate, discontinuity of the dielectric properties causes abrupt changes in electric field spatial distribution and thus alters capacitance measurement by simulating defects in adhesive joints regarding permittivity uncertainties. Further understanding of the cause of degraded adhesion quality can be obtained. This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation and smart monitoring’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3