A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

Author:

Koven C. D.1,Schuur E. A. G.2,Schädel C.2,Bohn T. J.34,Burke E. J.5,Chen G.6,Chen X.3,Ciais P.7,Grosse G.8,Harden J. W.9,Hayes D. J.6,Hugelius G.10,Jafarov E. E.11,Krinner G.12,Kuhry P.10,Lawrence D. M.13,MacDougall A. H.14,Marchenko S. S.15,McGuire A. D.16,Natali S. M.17,Nicolsky D. J.15,Olefeldt D.18,Peng S.712,Romanovsky V. E.15,Schaefer K. M.11,Strauss J.8,Treat C. C.9,Turetsky M.19

Affiliation:

1. Earth Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA

2. Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA

3. Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA

4. School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

5. Met Office Hadley Centre, Exeter, UK

6. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

7. Laboratoire des Sciences du Climat et de l’Environnement (LSCE CEA-CNRS-UVSQ), Gif-sur-Yvette, France

8. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany

9. United States Geological Survey, Menlo Park, CA, USA

10. Department of Physical Geography, Bolin Centre of Climate Research, Stockholm University, Stockholm, Sweden

11. National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA

12. Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS and Université Grenoble Alpes, Grenoble 38041, France

13. Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA

14. School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

15. Geophysical Institute Permafrost Laboratory, University of Alaska, Fairbanks, AK, USA

16. US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, AK, USA

17. Woods Hole Research Center, Falmouth, MA, USA

18. Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada

19. Department of Integrative Biology, University of Ontario, Guelph, Ontario, Canada

Abstract

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change ( γ sensitivity) of −14 to −19 Pg C °C −1 on a 100 year time scale. For CH 4 emissions, our approach assumes a fixed saturated area and that increases in CH 4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH 4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3