On the limits of experimental knowledge

Author:

Evans P. W.1,Thébault K. P. Y.2ORCID

Affiliation:

1. School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, Australia

2. Department of Philosophy, University of Bristol, Bristol, UK

Abstract

To demarcate the limits of experimental knowledge, we probe the limits of what might be called an experiment. By appeal to examples of scientific practice from astrophysics and analogue gravity, we demonstrate that the reliability of knowledge regarding certain phenomena gained from an experiment is not circumscribed by the manipulability or accessibility of the target phenomena. Rather, the limits of experimental knowledge are set by the extent to which strategies for what we call ‘inductive triangulation’ are available: that is, the validation of the mode of inductive reasoning involved in the source-target inference via appeal to one or more distinct and independent modes of inductive reasoning. When such strategies are able to partially mitigate reasonable doubt, we can take a theory regarding the phenomena to be well supported by experiment. When such strategies are able to fully mitigate reasonable doubt, we can take a theory regarding the phenomena to be established by experiment. There are good reasons to expect the next generation of analogue experiments to provide genuine knowledge of unmanipulable and inaccessible phenomena such that the relevant theories can be understood as well supported. This article is part of a discussion meeting issue ‘The next generation of analogue gravity experiments’.

Funder

Arts and Humanities Research Council

Australian Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference115 articles.

1. Confirmation via analogue simulation: what dumb holes could tell us about gravity;Dardashti R;Br. J. Phil. Sci.,2017

2. Hawking radiation and analogue experiments: A Bayesian analysis

3. Thébault KPY. 2019 What can we learn from analogue experiments? In Why trust a theory? (eds R Dardashti R Dawid K Thébault K). Cambridge UK: Cambridge University Press.

4. The Scientific Image

5. Monton B Mohler C. 2017 Constructive Empiricism. In The stanford encyclopedia of philosophy (ed. EN Zalta) summer edn. Stanford CA: Metaphysics Research Lab Stanford University.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3