Effect of adsorption, radioactive decay and fractal structure of matrix on solute transport in fracture

Author:

Chugunov Vladimir1,Fomin Sergei2ORCID

Affiliation:

1. Moscow City University, Moscow, Russia

2. California State University, Chico, CA, USA

Abstract

Reservoir contamination by various contaminants including radioactive elements is an actual environmental problem for all developed countries. Analysis of mass transport in a complex environment shows that the conventional diffusion equation based on Fick's Law fails to model the anomalous character of the diffusive mass transport observed in the field and laboratory experiments. These complex processes can be modelled by non-local advection–diffusion equations with temporal and spatial fractional derivatives. In the present paper, fractional differential equations are used for modelling the transport of radioactive materials in a fracture surrounded by the porous matrix of fractal structure. A new form of fractional differential equation for modelling migration of the radioactive contaminant in the fracture is derived and justified. Solutions of particular boundary value problems for this equation were found by application of the Laplace transform. Through the use of fractional derivatives, the model accounts for contaminant exchange between fracture and surrounding porous matrix of fractal geometry. For the case of an arbitrary time-dependent source of radioactive contamination located at the inlet of the fracture, the exact solutions for solute concentration in the fracture and surrounding porous medium are obtained. Using the concept of a short memory, an approximate solution of the problem of radioactive contaminant transport along the fracture surrounded by the fractal type porous medium is also obtained and compared with the exact solution. This article is part of the theme issue ‘Advanced materials modelling via fractional calculus: challenges and perspectives’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3