Reliable polarization switching of BiFeO 3

Author:

Baek S. H.1,Eom C. B.1

Affiliation:

1. Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

As a room temperature multi-ferroic with coexisting anti-ferromagnetic, ferroelectric and ferroelastic orders, BiFeO 3 has been extensively studied to realize magnetoelectric devices that enable manipulation of magnetic ordering by an electric field. Moreover, BiFeO 3 is a promising candidate for ferroelectric memory devices because it has the largest remanent polarization ( P r >100 μC cm −2 ) of all ferroelectric materials. For these applications, controlling polarization switching by an electric field plays a crucial role. However, BiFeO 3 has a complex switching behaviour owing to the rhombohedral symmetry: ferroelastic (71 ° , 109 ° ) and ferroelectric (180 ° ) switching. Furthermore, the polarization is switched through a multi-step process: 180 ° switching occurs through three sequential 71 ° switching steps. By using monodomain BiFeO 3 thin-film heterostructures, we correlated such multi-step switching to the macroscopically observed reliability issues of potential devices such as retention and fatigue. We overcame the retention problem (i.e. elastic back-switching of the 71 ° switched area) using monodomain BiFeO 3 islands. Furthermore, we suppressed the fatigue problem of 180 ° switching, i.e. loss of switchable polarization with switching cycles, using a single 71 ° switching path. Our results provide a framework for exploring a route to reliably control multiple-order parameters coupled to ferroelastic order in other rhombohedral and lower-symmetry materials.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3