Toxicity of airborne particles—established evidence, knowledge gaps and emerging areas of importance

Author:

Kelly Frank J.1ORCID,Fussell Julia C.1ORCID

Affiliation:

1. NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Michael Uren Building, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK

Abstract

Epidemiological research has taught us a great deal about the health effects of airborne particulate matter (PM), particularly cardiorespiratory effects of combustion-related particles. This has been matched by toxicological research to define underlying mechanistic pathways. To keep abreast of the substantial challenges that air pollution continues to throw at us requires yet more strides to be achieved. For example, being aware of the most toxic components/sources and having a definitive idea of the range of associated disease outcomes. This review discusses approaches designed to close some of these knowledge gaps. These include a focus on particles arising from non-exhaust PM at the roadside and microplastics—both of which are becoming more relevant in the light of a shift in PM composition in response to global pressure to reduce combustion emissions. The application of hypothesis-free approaches in both mechanistic studies and epidemiology in unveiling unexpected relationships and generating novel insights is also discussed. Previous work, strengthening the evidence for both the adverse effects and benefits of intervention tell us that the sooner we act to close knowledge gaps, increase awareness and develop creative solutions, the sooner we can reduce the public health burden attributable to these complex and insidious environmental pollutants. This article is part of a discussion meeting issue ‘Air quality, past present and future’.

Funder

National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Exposures and Health, a partnership between Public Health England and Imperial College London

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3