Effect of crystallographic compatibility and grain size on the functional fatigue of sputtered TiNiCuCo thin films

Author:

Chluba C.1ORCID,Ge W.2,Dankwort T.1,Bechtold C.3,de Miranda R. Lima3,Kienle L.1,Wuttig M.2,Quandt E.1ORCID

Affiliation:

1. Institute for Materials Science, Faculty of Engineering, University of Kiel, Kiel, Germany

2. Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA

3. Acquandas GmbH, Kiel, Germany

Abstract

The positive influence of crystallographic compatibility on the thermal transformation stability has been already investigated extensively in the literature. However, its influence on the stability of the shape memory effect or superelasticity used in actual applications is still unresolved. In this investigation sputtered films of a highly compatible TiNiCuCo composition with a transformation matrix middle eigenvalue of 1±0.01 are exposed to thermal as well as to superelastic cycling. In agreement with previous results the thermal transformation of this alloy is with a temperature shift of less than 0.1 K for 40 cycles very stable; on the other hand, superelastic degradation behaviour was found to depend strongly on heat treatment parameters. To reveal the transformation dissimilarities between the differently heat-treated samples, the microstructure has been analysed by transmission electron microscopy, in situ stress polarization microscopy and synchrotron analysis. It is found that good crystallographic stability is not a sufficient criterion to avoid defect generation which guarantees high superelastic stability. For the investigated alloy, a small grain size was identified as the determining factor which increases the yield strength of the composition and decreases the functional degradation during superelastic cycling. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.

Funder

German research foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3