A survey of algorithms for transforming molecular dynamics data into metadata for in situ analytics based on machine learning methods

Author:

Taufer Michela1ORCID,Estrada Trilce2ORCID,Johnston Travis3ORCID

Affiliation:

1. Electrical Engineering and Computer Science Department, The University of Tennessee Knoxville, 401 Min H. Kao Bldg., 1520 Middle Drive, Knoxville, TN 37996-2250, USA

2. Computer Science Department, University of New Mexico, MSC01 1130, Albuquerque, NM 87131-1070, USA

3. Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA

Abstract

This paper presents the survey of three algorithms to transform atomic-level molecular snapshots from molecular dynamics (MD) simulations into metadata representations that are suitable for in situ analytics based on machine learning methods. MD simulations studying the classical time evolution of a molecular system at atomic resolution are widely recognized in the fields of chemistry, material sciences, molecular biology and drug design; these simulations are one of the most common simulations on supercomputers. Next-generation supercomputers will have a dramatically higher performance than current systems, generating more data that needs to be analysed (e.g. in terms of number and length of MD trajectories). In the future, the coordination of data generation and analysis can no longer rely on manual, centralized analysis traditionally performed after the simulation is completed or on current data representations that have been defined for traditional visualization tools. Powerful data preparation phases (i.e. phases in which original row data is transformed to concise and still meaningful representations) will need to proceed data analysis phases. Here, we discuss three algorithms for transforming traditionally used molecular representations into concise and meaningful metadata representations. The transformations can be performed locally. The new metadata can be fed into machine learning methods for runtime in situ analysis of larger MD trajectories supported by high-performance computing. In this paper, we provide an overview of the three algorithms and their use for three different applications: protein–ligand docking in drug design; protein folding simulations; and protein engineering based on analytics of protein functions depending on proteins' three-dimensional structures. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.

Funder

NSF SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive Protein-Ligand Docking System based on Multi-Scale Modeling

NSF BIGDATA: IA: Collaborative Research: In Situ Data Analytics for Next Generation Molecular Dynamics Workflows

NSF SHF: Small: Collaborative Research: Modeling and Analyzing Big Data on Peta- and Exascale Distributed Systems supported by MapReduce Methodologies

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3