Prospects for electroactive and conducting framework materials

Author:

Murase Ryuichi1,Ding Bowen1,Gu Qinyi1,D'Alessandro Deanna M.1ORCID

Affiliation:

1. School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia

Abstract

Electroactive and conducting framework materials, encompassing coordination polymers and metal–organic frameworks, have captured the imagination of the scientific community owing to their highly designable nanoporous structures and their potential applications in electrochromic devices, electrocatalysts, porous conductors, batteries and solar energy harvesting systems, among many others. While they are now considered integral members of the broader field of inorganic materials, it is timely to reflect upon their strengths and challenges compared with ‘traditional’ solid-state materials such as minerals, pigments and zeolites. Indeed, the latter have been known since ancient times and have been prized for centuries in fields as diverse as art, archaeology and industrial catalysis. This opinion piece considers a brief historical perspective of traditional electroactive and conducting inorganic materials, with a view towards very recent experimental progress and new directions for future progress in the burgeoning area of coordination polymers and metal–organic frameworks. Overall, this article bears testament to the rich history of electroactive solids and looks at the challenges inspiring a new generation of scientists. This article is part of the theme issue ‘Mineralomimesis: natural and synthetic frameworks in science and technology’.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3