A 40-million-year history of atmospheric CO 2

Author:

Zhang Yi Ge1,Pagani Mark1,Liu Zhonghui2,Bohaty Steven M.3,DeConto Robert4

Affiliation:

1. Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA

2. Department of Earth Sciences, The University of Hong Kong, Hong Kong, People's Republic of China

3. School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK

4. Department of Geosciences, University of Massachusetts-Amherst, Amherst, MA 01003, USA

Abstract

The alkenone– p CO 2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide ( p CO 2 ) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO 2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO 2 results. In this study, we present a p CO 2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO 2 record site are broadly consistent with previously published multi-site alkenone–CO 2 results. However, new p CO 2 estimates for the Middle Miocene are notably higher than published records, with average p CO 2 concentrations in the range of 400–500 ppm. Our results are generally consistent with recent p CO 2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO 2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17–14 million years ago, Ma), followed by a decline in CO 2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ 18 O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27–23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO 2 levels. Additionally, a large positive δ 18 O excursion near the Oligocene–Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO 2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the Neogene with low CO 2 levels, algal carbon concentrating mechanisms and spontaneous biocarbonate–CO 2 conversions are likely to play a more important role in algal carbon fixation, which provides a potential bias to the alkenone– p CO 2 method.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3