Affiliation:
1. Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
Abstract
A historical account is given of the 25-year development of dedicated synchrotron beamlines for single-crystal diffraction as applied to the so-called small-molecule fields of chemistry and materials science. Designs have drawn on previous successful models in macromolecular crystallography, with appropriate modifications in view of the different properties and behaviour of the respective sample types. Key factors in making these facilities attractive and productive for users include familiarity of operational procedures and the availability of experimental techniques and features normally found in local chemical crystallography laboratories, especially for the handling of samples and processing of diffraction data. Beamlines dedicated to single-crystal diffraction rather than shared with other techniques can be optimized for effective and efficient use. The experience gained from the original design, development and exploitation of stations 9.8 and 16.2SMX at the Daresbury Laboratory Synchrotron Radiation Source and beamline 11.3.1 at the Advanced Light Source have led to highly productive current facilities at ALS beamline 12.2.1 and Diamond Light Source beamline I19, including the recent introduction of remote-access operation. Such facilities have generated and continue to provide major impact in academic and commercial research that could otherwise not be achieved, including patents and applications in pharmaceuticals, energy and gas storage systems, and government policy.
This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.
Funder
Engineering and Physical Sciences Research Council
Daresbury Laboratory
Science and Technology Facilities Council
Newcastle University
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献