Cytoskeleton reorganization of spreading cells on micro-patterned islands: a functional model

Author:

Loosli Y.123,Luginbuehl R.3,Snedeker J. G.12

Affiliation:

1. Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Forchstrasse 340, 8008 Balgrist, Switzerland

2. Institute for Biomechanics, Department of Mechanical Engineering, ETH Zurich, 8093 Zurich, Switzerland

3. RMS Foundation, 2544 Bettlach, Switzerland

Abstract

Predictive numerical models of cellular response to biophysical cues have emerged as a useful quantitative tool for cell biology research. Cellular experimentsin silicocan augmentin vitroandin vivoinvestigations by filling gaps in what is possible to achieve through ‘wet work’. Biophysics-based numerical models can be used to verify the plausibility of mechanisms regulating tissue homeostasis derived from experiments. They can also be used to explore potential targets for therapeutic intervention. In this perspective article we introduce a single cell model developed towards the design of novel biomaterials to elicit a regenerative cellular response for the repair of diseased tissues. The model is governed by basic mechanisms of cell spreading (lamellipodial and filopodial extension, formation of cell–matrix adhesions, actin reinforcement) and is developed in the context of cellular interaction with functionalized substrates that present defined points of potential adhesion. To provide adequate context, we first review the biophysical underpinnings of the model as well as reviewing existing cell spreading models. We then present preliminary benchmarking of the model against published experiments of cell spreading on micro-patterned substrates. Initial results indicate that our mechanistic model may represent a potentially useful approach in a better understanding of cell interactions with the extracellular matrix.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3