Resonant Doppler effect in systems with variable delay

Author:

Müller-Bender D.1ORCID,Otto A.1ORCID,Radons G.1

Affiliation:

1. Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany

Abstract

We demonstrate that a time-varying delay in nonlinear systems leads to a rich variety of dynamical behaviour, which cannot be observed in systems with constant delay. We show that the effect of the delay variation is similar to the Doppler effect with self-feedback. We distinguish between the non-resonant and the resonant Doppler effect corresponding to the dichotomy between conservative delays and dissipative delays. The non-resonant Doppler effect leads to a quasi-periodic frequency modulation of the signal, but the qualitative properties of the solution are the same as for constant delays. By contrast, the resonant Doppler effect leads to fundamentally different solutions characterized by low- and high-frequency phases with a clear separation between them. This is equivalent to time-multiplexed dynamics and can be used to design systems with well-defined multistable solutions or temporal switching between different chaotic and periodic dynamics. We systematically study chaotic dynamics in systems with large dissipative delay, which we call generalized laminar chaos. We derive a criterion for the occurrence of different orders of generalized laminar chaos, where the order is related to the dimension of the chaotic attractor. The recently found laminar chaos with constant plateaus in the low-frequency phases is the zeroth-order case with a very low dimension compared to the known high dimension of turbulent chaos in systems with conservative delay. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.

Funder

German Research Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3