Multiscale computing for science and engineering in the era of exascale performance

Author:

Hoekstra Alfons G.12ORCID,Chopard Bastien3ORCID,Coster David4,Portegies Zwart Simon5,Coveney Peter V.6ORCID

Affiliation:

1. Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands

2. High Performance Computing Department, ITMO University, St Petersburg, Russia

3. Department of Computer Science, University of Geneva, Switzerland

4. Institute for Plasma Physics, Garching, Germany

5. Leiden Observatory, Leiden University, The Netherlands

6. The Centre for Computational Science, Department of Chemistry, University College London, UK

Abstract

In this position paper, we discuss two relevant topics: (i) generic multiscale computing on emerging exascale high-performing computing environments, and (ii) the scaling of such applications towards the exascale. We will introduce the different phases when developing a multiscale model and simulating it on available computing infrastructure, and argue that we could rely on it both on the conceptual modelling level and also when actually executing the multiscale simulation, and maybe should further develop generic frameworks and software tools to facilitate multiscale computing. Next, we focus on simulating multiscale models on high-end computing resources in the face of emerging exascale performance levels. We will argue that although applications could scale to exascale performance relying on weak scaling and maybe even on strong scaling, there are also clear arguments that such scaling may no longer apply for many applications on these emerging exascale machines and that we need to resort to what we would call multi-scaling . This article is part of the theme issue ‘Multiscale modelling, simulation and computing: from the desktop to the exascale’.

Funder

European Union Horizon 2020 research and innovation programme

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference54 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3