Affiliation:
1. Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
2. ALISTORE-ERI European Research Institute, France
Abstract
Current societal challenges in terms of energy storage have prompted an intensification in the research aiming at unravelling new high energy density battery technologies. These would have the potential of having disruptive effects in the world transition towards a less carbon-dependent energy economy through transport, both by electrification and renewable energy integration. Aside from controversial debates on lithium supply, the development of new sustainable battery chemistries based on abundant elements is appealing, especially for large-scale stationary applications. Interesting alternatives are to use sodium, magnesium or calcium instead of lithium. While for the Na-ion case, fast progresses are expected as a result of chemical similarities with lithium and the cumulated Li-ion battery know-how over the years, for Ca and Mg the situation is radically different. On the one hand, the possibility to use Ca or Mg metal anodes would bring a breakthrough in terms of energy density; on the other, development of suitable electrolytes and cathodes with efficient multivalent ion migration are bottlenecks to overcome.
This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.
Funder
European Commission H2020
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献