Wireless power transfer-based eddy current non-destructive testing using a flexible printed coil array

Author:

Daura Lawal Umar12ORCID,Tian GuiYun13ORCID,Yi Qiuji1,Sophian Ali4

Affiliation:

1. School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

2. Electrical Engineering Department, Faculty of Engineering, Bayero University, Kano, Nigeria

3. School of Automation Engineering, University of Electronic Science and Technology, Chengdu, People's Republic of China

4. Department of Mechatronics Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Abstract

Eddy current testing (ECT) has been employed as a traditional non-destructive testing and evaluation (NDT&E) tool for many years. It has developed from single frequency to multiple frequencies, and eventually to pulsed and swept-frequency excitation. Recent progression of wireless power transfer (WPT) and flexible printed devices open opportunities to address challenges of defect detection and reconstruction under complex geometric situations. In this paper, a transmitter–receiver (Tx–Rx) flexible printed coil (FPC) array that uses the WPT approach featuring dual resonance responses for the first time has been proposed. The dual resonance responses can provide multiple parameters of samples, such as defect characteristics, lift-offs and material properties, while the flexible coil array allows area mapping of complex structures. To validate the proposed approach, experimental investigations of a single excitation coil with multiple receiving coils using the WPT principle were conducted on a curved pipe surface with a natural dent defect. The FPC array has one single excitation coil and 16 receiving (Rx) coils, which are used to measure the dent by using 21 C-scan points on the dedicated dent sample. The experimental data were then used for training and evaluation of dual resonance responses in terms of multiple feature extraction, selection and fusion for quantitative NDE. Four features, which include resonant magnitudes and principal components of the two resonant areas, were investigated for mapping and reconstructing the defective dent through correlation analysis for feature selection and feature fusion by deep learning. It shows that deep learning-based multiple feature fusion has outstanding performance for 3D defect reconstruction of WPT-based FPC-ECT. This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation and smart monitoring’.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3