Time symmetric electrodynamics and the arrow of time in cosmology

Author:

Abstract

This paper seeks to establish a connexion between the local arrow of time given by the electromagnetic radiation and the cosmological arrow of time given by the expansion of the universe. The Wheeler-Feynman absorber theory of radiation is applied to the expanding cosmological models. First, it is shown that the Schwarzschild-Tetrode-Fokker principle of direct interparticle action can be extended to the general Riemannian space-time. This generalization is considerably simplified in the conformally flat spaces—as all the Robertson—Walker spaces are. In the application of the absorber theory to various cosmological models, the refractive index turns out to play a crucial part. The ambiguities connected with the sign of the imaginary part of the refractive index are resolved if two conditions are fulfilled: (i) a search is made for a self-consistent solution with full retarded (or advanced) solutions (ii) in an elementary theory the origin of the imaginary part of the refractive index is traced to the radiative reaction itself and not to the collisional damping considered by Hogarth. It is shown that full retarded solutions are consistent in the steady-state cosmology and full advanced solutions in the Einstein-de Sitter cosmology. Full advanced solutions are not consistent in the former and full retarded solutions in the latter. Some interesting implications of this result in the C -field approach to the steady-state cosmology are considered.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference15 articles.

1. The Steady-State Theory of the Expanding Universe

2. Courant R. & Hilbert D. 1963 Methods of mathematical physics vol. 2. Interscience Publishers.

3. DeWitt B. S. & Brehme R. W. i 960 Annals of Physics 9 220.

4. Proc. Roy;Dirac P. A. M.;Soc. A,1938

5. An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3