Further studies of modulated light in a double resonance experiment

Author:

Abstract

This is an investigation, at low frequencies, of the modulation of fluorescent light which has already been found a t higher frequencies in a double resonance experiment. In the earlier work, in which the frequency of magnetic resonance was of order 10 Mc/s, the Zeeman levels of the excited atom s were well separated compared with their natural width (1 M c/s): in the present work they are completely unresolved at the centre of the magnetic resonance, which is studied a t 1 kc/s. The principal resonance phenomena are observed as before under the new conditions: they are centred on a field near to zero, while their width is greater than 1G. New resonance phenomena are also studied, which do not appear when the resonance frequency is greater than the natural width of the levels. A theory, previously published, is applied to predict the form of the new resonance curves. An identical result is predicted by the use of a classical model.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference6 articles.

1. Proc. Roy;Soc. A,1961

2. Proc. Roy;Series G. W.;Soc. A,1961

3. Proc. Roy;Series G. W .;Soc. A,1963

4. Z;Phys.,1924

5. Ergebn. exalct;Naturw .,1925

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3