Hyperfine structure and nuclear moments of samarium

Author:

Abstract

Experimental and theoretical work has been carried out on the hyperfine structure of the 4ƒ 6 7 F ground multiplet of samarium. Hyperfine structure intervals have been measured in the levels J = 1, 2, 3 and 4 for both odd isotopes 147 Sm and 149 Sm by the method of atomic beams. These intervals have been fitted to magnetic dipole and electric quadrupole interaction constants. Further measurements at high magnetic field by the method of triple resonance have led to the evaluation of the nuclear magnetic dipole moments of the two isotopes. It is shown that a calculation of the breakdown of L-S coupling and of second order corrections, off-diagonal in J , is necessary for an interpretation of the spectrum. The application of these corrections is facilitated by the formulation of an effective Hamiltonian, and the whole problem is treated step by step as a practical example of the use of tensor operator techniques. The spectrum is described in terms of a few overdetermined parameters, and in particular three radial parameters are evaluated. They are defined by the operator describing the magnetic field produced by the electrons at the nucleus: T ( e ) 1 = 2 β i { < r l 3 > 1 i < r s C 3 > 10 ( s C 2 ) i 1 + < r s 3 > s i } . Their values are: < r i -3 > = 6.39 0 6 a 0 -3 , < r 5 C -3 > = 6.5 13 12 a 0 -3 , < r 5 -3 > = -0.20 8 6 a 0 -3 . The most important result is a precise determination of the nuclear magnetic moment of 147 Sm. It is μ I 147 = -0.807 4 7 n. m., uncorrected for diamagnetism. Also the ratio of the dipole interaction constants is A 1 147 / A 1 149 = 1.2130 5 2 for all J , and there is no observable Bohr-Weisskopf anomaly. It is shown that relativity is a plausible explanation for the non-vanishing of < r 5 -3 > in the contact term, but this explanation is not conclusive because the effect of relativity cannot be distinguished from that of configuration interaction in any part of the dipole interaction. The values of < r i -3 > and < r 5 C -3 >, which differ from each other, are compared with the value of an < r -3 > integral calculated by other workers. From the quadrupole interaction a value of –½ e 2 Q 147 < r Q -3 > = 149· 40 86 Mc/s is obtained and with less precision a value of Q 147 = -0.2 2 0 barn, uncorrected for shielding effects, is deduced. The ratio of the quadrupole moments is Q 147 / Q 149 = -3.460 3 1 , on the assumption that this ratio is the same as that of the quadrupole interaction constants.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference25 articles.

1. P hys;Rev.,1937

2. Proc. P hys;Soc.,1964

3. B lean ey B . 1964 N u c le a r m o m e n ts o f th e la n th a n o n s in Quantum electronics proceedings of the third international congress vol. 1 595.

4. Proc. P hys;Soc. A,1952

5. P hys;Rev.,1950

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nuclear Structure and Decay Data for A=149 Isobars;Nuclear Data Sheets;2022-11

2. Nuclear Data Sheets for A=147;Nuclear Data Sheets;2022-03

3. Spectroscopy of the S01−D21 clock transition in Lu+176;Physical Review A;2019-02-25

4. Laser spectroscopy of 176Lu+;Journal of Modern Optics;2017-12-20

5. Relativistic effects on the hyperfine structures of2p4(3P)3p2Do,4Do, and4Poin19F i;Physical Review A;2013-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3