The detection of single quanta of circulation in liquid helium II

Author:

Abstract

An apparatus is described for detecting single quanta of superfluid circulation round a fine wire in liquid helium II. The wire is stretched down the centre of a cylindrical vessel containing helium, and the circulation may be established by rotating the whole apparatus about the axis of the wire and cooling from above the λ-point. The wire can be set into transverse vibration, and the circulation round it can then be obtained from the rate of precession of the plane of vibration. The technique proves to be sufficiently sensitive for the measurement of circulations of order h/m with an accuracy of about 3%. The method in its present form measures only an average of the circulation along the length of the wire, and it is found that this average is not quantized. Apparent circulations equal to a fraction of a quantum are attributed to quantized vortices that are attached to only a fraction of the length of the wire, and this interpretation has been confirmed by showing that an apparent circulation of exactly h/m has much greater stability than any other value. In this way the quantization of superfluid circulation in units of h/m has been experimentally verified. Observations made in the course of this work show clearly that superfluid circulations (including free vortex lines) can persist indefinitely even when the rotation of the apparatus is stopped. Values have also been obtained for the circulation round the wire as a function of the angular velocity of rotation, and it is shown from these that the energy of a free vortex line in the helium surrounding the wire may perhaps be considerably smaller than has hitherto been supposed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference3 articles.

1. Feynm an R . P. 1955 Progress N orth H olland Publishing Co.

2. Gamtsem lidze G. A. 1958 in low temperature physics (ed. C. J . Gorter) 1 ch. I I p. 36.

Cited by 265 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conformal maps and superfluid vortex dynamics on curved and bounded surfaces: The case of an elliptical boundary;SciPost Physics;2024-08-08

2. Detection of Quantized Vortices Using Fourth Sound Attenuation;Journal of Low Temperature Physics;2024-04-26

3. Phenomenology of transition to quantum turbulence in flows of superfluid helium;Proceedings of the National Academy of Sciences;2024-03-08

4. Generatsiya kvantovykh vikhrey volnami na poverkhnosti sverkhtekuchego geliya;Письма в Журнал экспериментальной и теоретической физики;2023-12-15

5. Generation of Quantum Vortices by Waves on the Surface of Superfluid Helium;JETP Letters;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3