Electrical control of gas flows in combustion processes

Author:

Abstract

The theory of the ionic wind is developed for flame ions travelling towards electrodes of various configurations so that entrainment as well as main stream gas velocities can be predicted. It is shown that, by confining entrainment to specified regions, large flow velocities can be induced at the flame itself, where they can be used to modify a variety of combustion processes. Theoretical maximum values of the flow parameters are calculated for several configurations likely to be of practical use and these are compared with results of experiment. The experiments are designed to test the general theory and to determine to what extent the theoretically deduced maxima are altered by inevitable practical complications such as entrainment of hot gas, deposition of soot and other specks on the electrodes and convergence of lines of force on to individual strands of gauze-electrodes. The potentialities of varying parameters such as geometry, temperature, pressure and composition as well as super­-imposing magnetic fields are also examined. A variety of practical examples is considered in the light of this theory. Experiments confirm that confined entrainment can be used to aerate diffusion flames in an accurately controllable manner without risking flash-back or requiring an air supply, metering and mixing systems. Similarly, it is demonstrated that combustion intensity can be increased by field-induced recirculation of hot products, thereby minimizing random turbulence and heat losses to the large obstacles usually employed for this purpose.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference23 articles.

1. Proc. Roy;Id D. B .;Soc. A,1954

2. IV. The Bakerian Lecture: on some new electro-chemical phenomena

3. C alco te H . F . 1949 3rd In t. Sym posium on Combustion p . 245. B a Itim o re : W illiam s a n d W ilk in s.

4. In d;Engng Chem.,1951

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3