Liquid instability and energy transformation near a magnetic neutral line: a soluble non-linear hydromagnetic problem

Author:

Abstract

Hydromagnetic flow of a conducting fluid has a special character near a magnetic neutral line. This is investigated with reference to the two-dimensional motion of a cylinder of perfectly conducting liquid in a permanent magnetic field, of which the axis of the cylinder is a neutral line. Electric current is induced in the liquid by its irrotational motion in the magnetic field. The liquid is uniform, incompressible and frictionless. The surface is elliptically cylindrical, infinitely long, free and in vacuo. The motion is governed by the force exerted on the electric current by the magnetic field, permanent and induced. The stream lines are constant rectangular hyperbolas, in planes normal to the cylinder axis. The permanent magnetic field lines are orthogonal rectangular hyperbolas. The cylinder axis is a stagnation line and a magnetic neutral line. If the liquid is initially at rest, with circular cross-section, and no electric current, its state is unstable. A small motion imparted to it, of the kind indicated, will grow indefinitely, magnetic energy being converted into kinetic energy. The initial motion, however, need not be small. This non-linear hydromagnetic problem is completely soluble. The initial conditions may be chosen in more than one way. The bearing of the solution on the theories of solar flares and the aurora is briefly considered.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference15 articles.

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MHD turbulence: a biased review;Journal of Plasma Physics;2022-10

2. On the feasibility of self-similar solutions of the MHD equations near a magnetic null point;International Journal of Non-Linear Mechanics;2020-11

3. The onset of electron-only reconnection;Journal of Plasma Physics;2020-05-13

4. Relativistic Plasmoid Instability in Pair Plasmas;The Astrophysical Journal;2019-09-09

5. Onset of magnetic reconnection in a collisionless, high- plasma;Journal of Plasma Physics;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3