A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope

Author:

Abstract

Single-crystal films of gold in (111) orientation, and 500 to 2000 Å in thickness, have been prepared by an evaporation technique. A device has been constructed to allow these films to be strained in a controlled manner while under observation inside the electron microscope (Siemens Elmiskop I). It is shown, by the absence of observable plastic deformation, that the films deform elastically up to abnormally high strain values. This is confirmed, in the case of 500 Å films, by precision electron diffraction measurements, which indicate elastic strains as high as 1 to 1·5%. This represents a tensile strength several times that of hard-drawn gold wire. The high tensile strength occurs despite the presence of a high density of dislocations. Failure occurs once the elastic limit is exceeded. Detailed examination of the fractured specimens reveals that highly localized plastic deformation occurs immediately before fracture. The nature of the fracture process has been deduced from the micrographs, and it is shown that the catastrophic failure occurs as a result of the high stress level which exists when plastic deformation occurs, coupled with the stress concentrations which occur as localized thinning takes place.

Publisher

The Royal Society

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3