Supercurrents in lead—copper—-lead sandwiches

Author:

Abstract

The resistance of thin-film lead-copper-lead junctions has been studied with the lead in the superconducting state. The junctions will sustain a supercurrent up to a certain critical value above which a voltage appears, rising smoothly from zero as the current is increased. The effect of a magnetic field upon the critical current has demonstrated that the sandwiches behave phenomenologically as Josephson junctions. The critical current rises rapidly as the temperature is lowered, decreases exponentially with increasing thickness of copper and increases with increase of the mean free path of the copper. A simplified version of the de Gennes theory of the proximity effect has been used to account quantitatively for this behaviour. The experiments show that the coherence length of the paired electrons in the copper increases as the temperature decreases, implying that thermal fluctuations govern the decay of the pairs. From the value of the decay length, the interaction parameter in copper is estimated to lie between +0·06 and +0·14. The properties of these junctions are compared with those of junctions with insulating barriers.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference12 articles.

1. P hil;Adkins C. J .;Mag.,1966

2. Anderson P . W . 1964 Lectures on the many-body problem (ed. E. R. Caianiello). New Y ork and L ondon: Academic Press.

3. Theory of Superconductivity

4. Bardeen J . & Schrieffer J . R . 1961 Progress in low temperature physics vol. h i (ed. C. J . Gorter). A m sterdam : N orth-H olland.

5. Z;Bassewitz A. v.;Phys.,1964

Cited by 267 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3