Abstract
Conventional kinetic techniques (static and flow systems) have been used in conjunction with an integral gas chromatographic analytical system in a study of the oxidation behaviour of butene-1,
cis
butene-2 and
trans
butene-2. The
cis
and
trans
isomers of butene-2 behaved indistinguishably. All three olefins gave qualitatively the same products, but butene-1 differed in the proportions of the individual products formed, and also in oxidation rate. A mechanism, based on that previously proposed for the ethylene + oxygen system, has been found to account for these differences. The ethylene mechanism is only possible, however, because of the slow rate of oxidation of the allylic type radicals easily formed in the reactions. The relative stability of these radicals provides a natural explanation of the phenomenon of self-inhibition observed in olefin + oxygen reactions. The discontinuous production of intermediate substances noted during the oxidation of butene-2 at high reaction rates, provides further evidence for a thermal theory of cool-fiame formation. Acetaldehyde has been found to be the degenerate branching agent and the maximum reaction rate of these systems was found to be identically related to the concentration of this substance.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献