A radiometric method of perpetuating the unit of light

Author:

Abstract

In using the present primary standard of light—which is a full radiator held at the freezing point of platinum—to reproduce the basic unit of light, the candela, it has proved both difficult and time-consuming to achieve the required accuracy. Similar troubles with earlier material standards prompted various proposals for trying to place photometry on a radiometric basis, not requiring the use of a material standard of light, but none of these came to fruition. In the present paper a new method is put forward, which is claimed to be both sound and effective, for the calibration of tungsten filament secondary standard lamps, and which does not require actual use of the primary standard. It consists in first passing the radiation from the lamp through a filter whose spectral transmission curve is a proportional ‘copy’ of the V λ function (the relative spectral response of the standard eye), and then measuring the resultant total radiation intensity with a calibrated radiation thermopile. After allowance for the scale factor relating the filter curve to the actual values of V λ , which factor can be found from spectrophotometric measurements, this radiation intensity clearly is an absolute measure of the luminous intensity of the lamp, needing only to be multiplied by some fixed factor for conversion from the power scale to the light scale. This factor is, in fact, the ratio between the K λ curve, representing the absolute luminous efficiency of radiation (in lumens per watt, for example), and the V λ curve which represents the same function on a relative scale and normalized to unity at its peak value. This ratio can be computed, although not without some uncertainty, from the known physical properties of the primary standard; or it may be found experimentally by making observations on either the primary standard or existing tungsten filament standard lamps with the new method. It is an advantage that if, as at the National Physical Laboratory, the thermopile is calibrated in terms of the watt by electrical means instead of by exposure to a standard full radiator, any small future adjustments in the values of the radiation constants or of the temperature assigned as the freezing point of platinum, will not affect the results. Preliminary experiments with the method are described. They suggest that the precision may significantly surpass what has so far been obtained in the use of the primary standard of light. As applied to existing N.P.L. standard lamps, the method has given the result K λ / V λ = 685 lumens per watt, as compared with a computed ratio of about 680. The paper concludes with a discussion of the implications of any possible future changes in V λ , and of such possible changes in the definition of the primary standard or the unit of light as the method itself seems to suggest.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference5 articles.

1. Proc. Roy;Gillham E .;Soc. A,1962

2. Moser H . Stille U. & Tingw aldt C. 1957

3. Muller C. 1928 C.R. Comm.

4. Muller C. & Frisch R . 1928 C.R. Com. Opt14 291.

5. In t.Eclairage 7 1116.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3