The climb of dislocation loops in zinc

Author:

Abstract

The annealing behaviour of faulted dislocation loops in quenched zinc has been studied with the aid of the electron microscope. On annealing, it is observed that some of the loops grow rather than shrink, and this has been attributed to the growth of zinc oxide on the foil surface, which results in the formation of vacancies. Loops which shrink on annealing are considered to lie beneath breaks in the surface oxide layer such that these regions are able to act in the normal manner as vacancy sinks. An estimation of the vacancy supersaturation near such shrinking loops shows that the chemical stress is low, and the climb rate of loops shrinking in the presence of a negligible chemical stress has been analysed to give a value for the stacking fault energy, y. An analysis of the climb rate of a faulted loop based on the emission of vacancies as the controlling process gives a value of 290 erg/cm 2 . A more reliable value of y, which is thought to be independent of the rate-controlling process, is obtained by comparing the climb rate of a faulted loop with that of a prismatic loop. A stacking fault energy value for zinc of 220 erg/cm 2 is deduced.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Zn powder on alloying during friction surfacing of Al–Mg alloy;Journal of Alloys and Compounds;2020-03

2. Mechanical alloying by friction surfacing process;Materials Letters;2019-11

3. Fabrication of Al-Zn solid solution via friction stir processing;Materials Characterization;2018-02

4. Oxidation of Metals and Alloys;Reference Module in Materials Science and Materials Engineering;2016

5. Dislocations in Crystals;Crystallography and Crystal Defects;2012-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3