Random electrodynamics

Author:

Abstract

This paper is a study of a statistical ensemble of classical harmonic oscillators which is stationary in time, and whose position and momentum distribution functions are those of the corresponding quantum-mechanical oscillator in its ground state. If the oscillating particle is charged, then in order to maintain the distribution stationary a certain random electromagnetic field must be present. The intensity distribution of the radiation field is calculated, and it is found to be identical with the ‘photon vacuum’ of quantum electrodynamics. It is suggested, therefore, that this radiation field, which in quantum field theory is treated entirely formally, might exist in the classical sense. The method is extended to the excited states. It is found that the classical ensembles corresponding to these have probability distributions which may be negative. However, when attention is shifted to the quantum-mechanical ‘mixture’, this is no longer the case. Furthermore, the intensity distribution of the radiation field at temperature T is shown to be simply the sum of the Planck distribution and the previously obtained zero-temperature field. The application of these results to statistical mechanics is discussed. In this paper the treatment is non-relativistic throughout, but radiative corrections of the type which give rise to the Lamb shift are an integral part of the theory.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference19 articles.

1. Proc. Carnb. phil;Moyal J .;Soc.,1949

2. Proc. Roy;Peng H .;Soc. Edinb.,1944

3. Doob J . L. 1953 Stochastic processes p. 88. Jo h n Wiley.

4. Gol'dm an I. I. K rirchenkov V. D . K ogan V. I. & Galitskii V. M. i960 Problems in quantum mechanics p p .136 ff. 280 ft. Infoseareh. H aar D. te r 1955 Elements ofstatistical mechanics p. 147. Constable.

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3