The numerical solution of differential equations governing the reflexion of long radio waves from the ionosphere. IV

Author:

Abstract

The previous papers in this series have described methods by which the differential equations governing the reflexion of long waves from the ionosphere may be solved with the use of an automatic digital computer, and have dealt with the application of these methods to some idealized ionosphere models. In this paper these methods are used in a comparative study of models which have been proposed for the day-time ionosphere in summer. The model whose theoretical reflecting properties most nearly agree with the experimental observations is found, and suggestions are made as to how it should be changed. A summary is given of the essential properties which an acceptable day-time ionosphere model must possess. The transition from day-time to night-time conditions in the ionosphere is also discussed, and it is shown that the sharp change in the reflexion coefficients can be accounted for qualitatively by the disappearance of a D -layer which might be present during the day at low level in the ionosphere.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference17 articles.

1. Sci. Rep.Pennsylv.

2. Proc. Roy;Barron D. W.;Soc. A,1959

3. Belrose J. 1957 Ph.D. Thesis University of Cambridge.

4. Proc;Bracewell R. N .;Inst. Elect. Engrs,1951

5. a Proc. Roy;Budden K. G.;Soc. A,1955

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3