Fluorescence and vibrational relaxation of nitric oxide studied by kinetic spectroscopy

Author:

Abstract

The first excited vibrational level of the ground electronic states of nitric oxide was popu­lated above its equilibrium value by flash photolysis of nitric oxide + inert gas mixtures, under isothermal conditions. Electronic excitation NO 2 II ( v = 0) + hv → NO 2 Ʃ ( v = 0, 1, 2) was followed either by fluorescence NO 2 Ʃ ( v = 0, 1, 2) → NO 2 II ( v = 0, 1, 2...) + hv , or by quenching NO 2 Ʃ ( v = 0, 1, 2) + M → NO 2 II( v = 0, 1, 2...) + M , causing a non-equilibrium population of the vibrational levels of the ground electronic states. Subsequently, the reactions NO 2 II ( v = 1) + M → NO 2 II ( v = 0) + M and NO 2 II ( v = 1) + NO 2 II ( v = 0) → 2NO 2 II ( v = 1) caused a decay of the vibrationally excited molecules with time; this was followed in absorption by kinetic spectroscopy. Because of the rapidity of the last reaction, bands of NO2 II with v >1 were usually observed only in the fluorescence spectrum. In mixtures of 1 to 5 mm of NO with a large excess of nitrogen or krypton, the con­centration of NO2 II ( v = 1) produced by the flash was of the order of 10-1 mm pressure, i. e. about the same concentration which is present in one atmosphere pressure of NO at room temperature. The absolute concentration of NO2 II ( v = 1) was measured accurately by plate photometry, high pressures of NO being used for calibration. The recorded probabilities of vibrational relaxation, P1-0, for NO2 II ( v = 1), and radii for electronic quenching, σ e , by NO, N 2 , CO, H 2 O and CO 2 , are P 1-0 σ e (Å) NO 3.55 x 10 -4 14 N 2 4 x 10 -7 ≤ 2x 10 -2 CO 2.5 x 10 -5 0.6 H 2 O 7 x 10 -3 30 CO 2 1.7 x 10 -4 5 With the use of an analytic form for the flash duration, the entire rise and fall of the concentration of excited species was quantitatively interpreted. A very small fraction of the NO was decomposed by the flash, due either to absorption of radiation below 1900 Å or by reaction of metastable NO molecules with each other or with ground state molecules. Abnormal effects were observed in NO+ H 2 +inert gas mixtures and chemical reaction occurred.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference3 articles.

1. Proc. Roy;Basco N .;Soc. A,1961

2. Bauer H. J . Kneser H. O. & Sittig E. 1959

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3