Frictional anisotropy in nonmetallic crystals

Author:

Abstract

A study is made of the effect of the crystallographic direction of sliding on the friction of the (001) surfaces of diamond, magnesium oxide and lithium fluoride crystals. The friction shows marked anisotropy and with all the crystals it is greatest in the <100> directions and least in the <110> directions. The degree and magnitude of the anisotropy is dependent upon the shape of the slider and the ease with which it penetrates the crystal surface. Sharp sliders increase the degree of brittle failure and this leads to deeper penetration and to the removal of more material during sliding. With these crystals the depth of penetration is greater in the <100> directions then in the <110> and it is this which is primarily responsible for the frictional anisotropy. An explanation of frictional anisotropy is proposed which is based on the difference in the magnitude and distribution of resolved shear stresses during sliding in various crystallographic directions. This analysis is used to predict the effect of crystallographic orientation on the frictional behaviour when a (110) surface of magnesium oxide replaces the cube (001) surface used in the other experiments. Mechanisms of deformation and fracture associated with the friction are described. Brittle behaviour predominates in diamond crystals and only cleavage cracks are observed. Appreciable plastic flow occurs in both magnesium oxide and lithium fluoride crystals. With these crystals the initial plastic deformation leads to dislocation interactions which result in cracking and fracture along the {110} planes. These interact with cleavage cracks on {100} planes which are produced by tensile stress and cause surface fragmentation and wear of the crystal. Plastic flow is the only mode of deformation observed on (001) lithium fluoride surfaces when a very smooth blunt slider is used. This causes ‘pile-up’ of material along <110> directions (as previously observed in copper crystals) but it does not produce any appreciable anisotropy in the friction.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference3 articles.

1. A .S.L .E;Gw A. T.;Trans.,1962

2. Friction and Iubrication of solids Part I; 1964 Part II. Oxford: Clarendon Press. Bow den, F . P . & H anw ell, A . E . 1966 Proc. Roy;Bow F .;Soc. A,1954

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3