A rapidly convergent procedure for solving the equations of subsonic potential flow. I. Numerical solutions

Author:

Abstract

The subsonic potential flow equations for a perfect gas are transformed by means of dependent variables s = ( ρ / ρ 0 ) n q/ a 0 and σ = 1/2 In ( ρ 0 / ρ ), where q is the local velocity, ρ and a the local density and speed of sound, and the suffix 0 indicates stagnation conditions, n is a parameter which is to be chosen to optimize the approximations. Bernoulli’s equation then becomes a relation between s 2 and σ which is independent of initial conditions. A family of first-approximation solutions in terms of the incompressible solution is obtained on linearizing. It is shown that for two-dimensional flow, the choice n = 0∙5 gives results as accurate as those obtained with the Karman—Tsien solution. The exact equations are then transformed into the plane of the incompressible velocity potential and stream function and the first-approximation results substituted in the non ­linear terms. The resulting second-approximation equations can then be solved by a relaxation method and the error in this approximation estimated by carrying out the third-approximation solution. Results are given for a circular cylinder at a free-stream Mach number, M = 0∙4, and a sphere at M = 0∙5. The error in the velocity distribution is shown to be less than ±1 % in the two-dimensional case. A rough and ready compressibility rule is formulated for axisymmetric bodies, dependent on their thickness ratios.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference12 articles.

1. Im ai I. 1941 Proc. P h ys. M ath. Soc. J a p a n 23 180.

2. K aplan C. 1943 N .A .C .A .Tech. R ep. no. 768.

3. Aero;Longhorn A. L.;Quart.,1954

4. Proc. R oy;Soc. A,1953

5. Takam i H . 1956 J .P h ys. Soc. Jap a n 11 145.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A rapidly convergent procedure for solving the equations of subsonic potential flow. II. Analytic solutions;Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences;1960-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3