The direct observation of polymer molecules and determination of their molecular weight

Author:

Abstract

An experimental investigation of the conditions necessary for the production of compact, single polymer molecules, in a form suitable for direct observation in the electron microscope, is described. Molecules are isolated by dispersing a dilute solution of the polymer as fine droplets on to a suitable substrate: ideally each droplet should contain either one or no polymer molecules. The solution is a mixture of two solvents, a good one and a poor one. Initially the good solvent predominates so that the probability of polymer aggregation is low. Preferential evaporation of the relatively volatile solvent on the substrate itself gives the poor solvent conditions needed for the formation of well-defined molecular spheres. Factors determining the choice of solvent, precipitant, and the composition of the mixture are discussed. There is little difficulty in obtaining single molecules with glassy amorphus polymers; rubbery polymers collapse and spherical molecules are formed only if the entire preparation is carried out at a temperature below that of the glass transition; crystalline polymers are not amenable to this technique. To obtain sufficient contrast the particles have to be shadowed and it is shown that, although certain dimensions are distorted by the metal coating, the shadow length faithfully represents the true particle diameter. Molecular weights, and their distribution, when of the order of a million and above, can readily be accurately determined. Conventional methods are unreliable in this region of high molecular weight.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference21 articles.

1. Boyer It. F . & H eidenreich It. D. 1945

2. J .A ppl;Vanderhoff J .;Phys.,1962

3. J .Colloid Sci. 17 668.

4. Biochem;Biopliys. Acta,1959

5. The effect of hydrogen bonding addends on the dilute solution viscosity of poly(acrylamide) and unionized poly(acrylic acid) and poly(methacrylic acid)

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3