Mucus formation in goblet cells

Author:

Abstract

The formation of mucus in goblet cells and its relation to the Golgi apparatus has been studied by various workers. Nassanow (1923) showed clearly that the mucin granules in the goblet cells of Triton originated in the Golgi apparatus, and so brought secretion in these cells into line with his theory of the bound secretion. More recently Clara (1926) has shown in the goblet cells of birds that the mucin first appears in the region next to the nucleus, between it and the gland lumen. Florey (1932, a, b ) has considered this more extensively in two recent papers, and for a number of mammals has shown that the mucin granules of goblet cells first form in the meshes of the Golgi network. In epithelial cells of the mouse vagina, undergoing conversion into mucous cells, he has found that the same process occurs. In a recent investigation of secretory formation in the salivary glands and pancreas it was found by the present author that in every cell type examined the young secretory granules first appeared in the basal region of the cell in relation to the mitochondria. Subsequent emigration occurred into the Golgi zone, where they underwent conversion into mature secretory granules. In the mucous cells of the salivary glands it was shown that these newly formed granules might be stained intravitam by Janus green or neutral red, and that in fixed preparations they stained selectively with acid fuchsin as described by Noll (1902), In the light of this work it appeared probable that while mucin formation might occur in the Golgi zone of the goblet cells as described by these authors, the origin of the granules might lie in the basal region of the cell.

Publisher

The Royal Society

Subject

General Medicine

Reference5 articles.

1. Clara M. (1926). ; Z. mikr. anat. Forsch. ' vol. 6 p. 256.

2. a). ` Brit;Florey H.;J. Exp. Path.,',1932

3. Florey H. ( 1932 b). Ibid. p. 349.

4. Nassonow D. N. (1923). 8Arch. mikr. Anat. ' vol. 97 p. 1.

5. Noll A. (1902). ` Arch. Anat.' ` Physiol. Abt ' p. 166.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3