Osmotic pressures in the henʼs egg

Author:

Abstract

In a recent paper Howard (1932) claims to have shown, by three methods, that the "expected" osmotic equilibria exist between the yolk and white of a hen's egg. Johlin (1933) has criticized her technique of cryhydric measurement and re-asserted that the yolk and white of an egg hive different values for depression of freezing point. Although Needham (1931) and Meyerhof (1931) have considered the possibility of the outer layer of yolk having a lower osmotic pressure than the inner, Howard gives no experimental evidence indicating the existence of an osmotic gradient within the yolk. The methods she used being apparently incapable of showing the difference in osmotic pressure between the whole yolk and the whole white of an egg were presumably unable also to detect the osmotic gradient in the yolk. Grollman's (1931) criticisms of the Hill thermo-electric method for the measurement of vapour pressures when employed with viscous solutions were repeated by Howard, with no other evidence than that it gave results which disagreed with her own. In particular, Bateman's low vapour pressure depression found in mixtures of egg yolk and egg white are declared to be incompatible with high vapour pressure depressions for yolk. It is strange that in the differentiation of the properties of egg yolk and white so many authors should have considered the yolk as homogeneous. It is a well-known fact that the formation of an egg yolk occurs by daily deposits in the ovary of the hen. These extend over several days and that the integrity of the daily deposit is maintained more or less for many days is evidenced by observation of the spherical zones in the yolk of a frozen egg that has been sectioned. Also it is easy to withdraw from the centre of the yolk, using a fine pipette, white yolk which is different chemically from the surrounding yellow yolk. Since no membrane is known to separate these two kinds of yolk nor the daily deposit of yolk, the existence of this non-homogeneity within the yolk must be an indication of the slowness of equilibration inside a hen's egg. Hence, when one speaks of the difference in osmotic pressure of average egg white and average egg yolk, no conclusions can be drawn logically regarding the difference in osmotic pressure on opposite sides of the vitelline membrane. As the Hill thermoelectric method of measuring vapour pressure requires but small quantities of solution, it was of interest to use this micro method to study the difference in osmotic pressures of samples of yolk and white obtained on opposite sides of the membrane.

Publisher

The Royal Society

Subject

General Medicine

Reference10 articles.

1. Baldes E. J. (1934). I n preparation.

2. The Osmotic Relations Between White and Yolk in the Hen's Egg

3. The formation of ice in protoplasm

4. Grollman A. (1931). *Biochem. Z. ' vol. 238 p. 408.

5. 4Proc;Hill A. Y.;Roy. Soc.,' A,1930

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3