Regeneration of synaptic connections by sensory neurons in leech ganglia maintained in culture

Author:

Abstract

Leech ganglia maintained in organ culture were used to follow regeneration and the formation of synaptic connections by individual neurons. From earlier physiological studies on operated animals it is known that the c. n. s. of the leech is able to regenerate and that specific connections can be reformed. The present experiments show that specific regeneration also occurs in vitro but that axons do not simply grow directly back to their targets. (1) Axons were severed by crushing the connectives linking pairs of ganglia at the time of removal from the animal. Light and electron microscopy indicated that the procedure of crushing severed all the axons within the connectives. For several days after the lesion had been made, conduction of impulses from one ganglion to the next was abolished. (2) After 5–10 days in culture, stimulation of the connectives with external electrodes gave rise to impulses that were once again conducted beyond the site of the lesion. Characteristic excitatory and inhibitory synaptic potentials were evoked in identified sensory and motor cells in both ganglia by this indiscriminate stimulation of axons. Electron micrographs of the crushed region showed not only regenerated axons traversing the site of the lesion but also synaptic profiles similar to those seen in the neuropile of normal ganglia. Thus, pre- and post-synaptic specializations had been formed during regeneration in a part of the c. n. s. where they are not normally present. (3) Individual sensory neurons were injected with horseradish peroxid­ase to reveal the course taken by their regenerating axons. At the site of the crush profuse branching occurred by 7 days. The arborization of a single axon was highly complex, with many varicosities present on fine branches. After two weeks in culture, one or more of the processes had usually grown beyond the crush and in certain instances had reached the next ganglion. Other branches ran back towards the ganglion in which the cell body was situated. During the period of the experiments (up to 45 days) no retraction of the sprouted fibres or of the arborization at the crush was observed. In addition to sprouting at the site of the lesion considerable sprouting also occurred within the ganglion, close to the cell body. (4) Individual mechanosensory neurons regenerated and would once again evoke synaptic potentials in their original targets after two weeks in culture. Thus, intracellular stimulation of single sensory cells in one ganglion gave rise to synaptic potentials in the appropriate motor neuron of the neighbouring ganglion. Injection of such sensory cells with horse­radish peroxidase showed that their axons had extended beyond the lesion and ramified in the neuropile of the next ganglion. (5) It is concluded that neurons in leech ganglia are able to regenerate and reform appropriate synaptic connections in culture. The degree of precision is hard to assess because of novel synaptic interactions and numerous additional sprouts that develop during regeneration.

Publisher

The Royal Society

Subject

General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3