The formation of the tryphine coating the pollen grains of Raphanus , and its properties relating to the self-incompatibility system

Author:

Abstract

The tryphine that coats the pollen grains of Raphanus is tapetally synthesized and is composed of a fibro-granular and a lipidic component. The fibro-granular material is proteinaceous and is secreted by cisternae of the endoplasmic reticulum. The lipidic component is derived, mainly, from degraded elaioplasts. The fibro-granular material is applied to the pollen exine first, followed by the lipidic mass. The tryphine condenses during the final stages of pollen maturation and dries down to form a thick, highly viscous coating. The major part of the condensation appears to result from dehydration. The tryphine, extracted from the pollen by a centrifugal method and mounted in a membrane, appears to be capable of penetrating the outer layers of a stigma of the same species and, if the pollen from which it was derived is incompatible with respect to the stigma, the stimulation of the production of the callosic reaction body in a manner similar to an incompatible pollen tube. It is proposed that, in Raphanus , substances responsible for the initiation of at least two stages in the self-incompatibility system are held in the tryphine.

Publisher

The Royal Society

Subject

General Medicine

Reference23 articles.

1. Self incompatibility systems in angiosperms III. Crucifera;Bateman A. J.;Lond.,1955

2. Protein bodies in Bryopsis hypnoides: Their relationship to wound-healing and branch septum development

3. Correns C. 1912 Selbsterilitat und Individualstoffe. Festschr. med: naturwiss. Oes. 84. Versdeutsch Naturforsch.u. Artze. pp. 186-217.

4. THE FINE STRUCTURE OF A PERITAPETAL MEMBRANE INVESTING THE MICROSPORANGIUM OF PINUS BANKSIANA

5. The r�le of the tapetum in the formation of sporopollenin-containing structures during microsporogenesis in Pinus banksiana

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3