The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium

Author:

Abstract

The flow properties of axoplasm have been studied in a defined chemical environment. Axoplasm extruded from squid giant axons was introduced into porous cellulose acetate tubes of diameter roughly equal to that of the original axon. Passage of axoplasm along the tube rapidly coated the tube walls with a layer of protein. By measuring the rate of flow back and forth along the tube, the rheological properties of the axoplasm plug were investigated at a range of pressures and in a variety of media. Axoplasm behaves as a classical Bingham body the motion of which can be characterized by a yield stress ( θ ) and a plastic viscosity ( η p1 ). In a potassium methanesulphonate medium containing 65 nM free Ca 2+ , θ averaged 109 ± 46 dyn/cm 2 and η p1 146 ± 83 P. † These values were little affected by ATP, colchicine, cytocholasin B or by replacing K by Na but were sensitive to the anion composition of the medium. The effectiveness of different anions at reducing θ and η p1 was in the order SCN > I > Br > Cl > methanesul­phonate. θ and η p1 were also drastically reduced by increasing the ionized Ca. This effect required millimolar amounts of Ca, was unaffected by the presence of ATP and was irreversible. It could be blocked by the protease inhibitor TLCK. E. p. r. measurements showed that within the matrix of the axoplasm gel there is a watery space that is largely unaffected by anions or calcium.

Publisher

The Royal Society

Subject

General Medicine

Reference52 articles.

1. Abe S. 1965 The viscoelasticity of slime mould protoplasm. In Symposium on Biorheology Proc. 4:th Int.Congr. Interscience.

2. Rheol.Providence R.I. 1963. pp. 147-158 (ed. A. Copley). New York:

3. Transport and metabolism of calcium ions in nerve;Baker P. F.;Biol.,1972

4. Mobility and transport of magnesium in squid giant axons

5. Replacement of the axoplasm of giant nerve fibres with artificial solutions

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3