Genetics of the (gram-negative) bacterial surface

Author:

Abstract

The surface of a gram-negative bacterium is made up of the lipopolysaccharide (l. p. s.) and protein components of the outer leaflet of its outer membrane, and of capsular polysaccharide, flagella and fimbriae if present. In Salmonella all the special genes needed for synthesis of the O-specific oligosaccharide repeat unit (different in each O group) of the l. p. s. sidechains are found in the rfb cluster, near his . Nearly all so-far identified rfa genes, for synthesis of l. p. s. core, are clustered between cysE and pyrE . Genes for polymerization and modification of O units are scattered: some are part of prophage genomes and some show ‘form variation’ – spontaneous alternation between expression and non-expression, mechanism unknown. Escherichia coli differs by frequent presence of capsular polysaccharides (K antigens), some determined by kps genes, unlinked to l. p. s. genes, others by his -linked genes perhaps homologous with rfb . Expression of some non-l. p. s. polysaccharide genes, but not of l. p. s. genes, is greatly influenced by the environment. Major outer membrane proteins (more than 10 5 molec. /bacterium) include: a lipoprotein, in part covalently joined to the cell wall, perhaps anchoring the outer membrane; and several proteins of molec. mass 30000–40000 (one of them phage-determined), some of which serve to make the outer membrane permeable to small hydrophilic molecules. Genes affecting sensitivity (adsorbing capacity) to various phages and colicins (e. g. tonA, bfe ) specify various ‘minor’ outer membrane proteins concerned with uptake of nutrients (e. g. iron ferrichrome, vitamin B 12 ) when present at very low concentrations. Neither the ‘major’ nor the ‘minor’ protein genes are clustered: their expression is subject to conspicuous regulation by environmental conditions. In E. coli the flagellin and hook protein structural genes are located in different clusters of motility-related genes. Missense mutations in the flagellin gene may cause alteration in flagellar shape or in serological character, which in Salmonella is also affected by gene nml , for methylation of the free amino groups of some lysines of flagellin. Electron microscopy of re-annealed DNA from the relevant region indicates that change of flagellar antigenic phase in Salmonella results from a reversible inversion of a 750 base-pair segment, probably constituting the phase-determinant gene. Production of fimbriae (pili) requires function of several linked pil genes, and is subject to a kind of ‘form variation’ of unknown mechanism. Genes in conjugative plasmids when derepressed cause production of sex pili. E. coli protein antigens K88 and K99, apparently fimbrial, concerned with adhesion to intestinal mucosa and so with enteropathogenicity, are plasmid-determined.

Publisher

The Royal Society

Subject

General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3