Visual identification of synaptic boutons on living ganglion cells and of varicosities in postganglionic axons in the heart of the frog

Author:

Abstract

1. Parasympathetic neurons were studied in the transparent interatrial septum of the frog (Rana pipiens) with light- and electron-microscopic techniques. The aim was to identify visually cellular and subcellular details in a living preparation, especially synaptic boutons on ganglion cells and the varicosities in postganglionic axons supplying the muscles of the heart. 2. The interatrial septum contains the following nervous elements: unipolar parasympathetic ganglion cells, their preganglionic vagal innervation, postganglionic sympathetic axons and sensory fibres. These structures and the nuclei of their related Schwann cells can be viewed with various optical systems, especially differential interference contrast optics. The same neural elements identified in the live preparation can be sectioned for electron microscopy. 3. Most ganglion cells are innervated by a single presynaptic axon, terminating in up to 27 synaptic boutons which on the average cover about 3.0 % of the surface of nerve cell bodies. A few scattered boutons also occur on the initial axonal portion of the ganglion cells. 4. Synaptic boutons on ganglion cells were recognized in the living unstained preparation. Their identity was confirmed by electron microscopy and by light microscopy combined with methylene blue, zinc iodide and osmium, and cholinesterase staining methods. 5. The terminal branches of postganglionic axons have numerous varicosities along their course. Some are as close as a few hundred angstroms (10 Å = 1 nm) to muscle fibres, others are many pm away. There are two types of varicosities: (i) those which contain predominantly granular vesicles characteristic of neurons releasing catecholamines, and (ii) those with predominantly agranular vesicles which belong to the cholinergic axons of septal ganglion cells. Regardless of their distance from muscle fibres, the cholinergic varicosities have the same fine structural features, including membrane thickenings, as synaptic boutons on the ganglion cells. These findings support earlier suggestions that the varicosities along postganglionic axons are a series of transmitter release sites. 6. Varicosities were observed in the live septum; their identity was confirmed by subsequent electron microscopy. Many live varicose axons were traced back to the vicinity of individual septal ganglion cells. Additional evidence that they belonged to a particular ganglion cell, and were therefore cholinergic, was obtained by injecting Procion yellow into the cell body and observing the neuron with a fluorescence microscope after the dye had spread into the axonal processes. Time lapse photography of up to 24 h showed no ‘ peristaltic ’ movement of varicosities. 7. Granular or agranular vesicles also occur along cylindrical axons within nerve bundles many pm away from muscle fibres. Like the vesicles in varicosities, they are clustered close to ‘thickenings’ in the surface membrane and belong to postganglionic nerve fibres. 8. Ganglion cells in isolated septa survive for 2 weeks or longer, still giving membrane potentials and impulses. Time lapse cinematography for up to 2 weeks after removing the septum showed that the organelles within the neurons were in motion and that a two-way traffic takes place between the cell body and axon, as commonly found in cultured neurons.

Publisher

The Royal Society

Subject

General Medicine

Reference62 articles.

1. A k ert K . & S an d ri C. 1968 A n electro n m icroscopic stu d y o f zinc iod id e-o sm iu m im p reg n atio n of neu ro n s. I . S tain in g o f sy n a p tic vesicles a t cholinergic ju n ctio n s. B ra in R es. 7 286-295.

2. A lexandrow icz J . S. 1951 M uscle re c e p to r o rg an s in th e abd o m en o f H om erus vulgaris a n d P a lin u ru s vulgaris. Q. J l microsc. S c i. 92 163-199.

3. M orphology a n d electrophysiology o f in te m e u ro n a l synapses in living p re p a ra tio n s o f p a ra sy m p a th e tic ganglia fro m frog u rin a ry b lad d er. F iziol;Chernigovskii V. N .;S S S R,1965

4. B e n n e tt M. R . & M errillees N . C. R . 1966 A n an aly sis o f th e tran sm issio n o f ex c ita tio n from auton o m ic nerv es to sm o o th m uscle. J . P hysiol. 185 520-535.

5. B e n n e tt M. R . & R ogers D . C. 1967 A s tu d y o f th e in n e rv a tio n o f th e ta e n ia coli. J . Cell B iol. 33 573-596.

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3