Fast-forward scaling theory

Author:

Masuda S.1ORCID,Nakamura K.2

Affiliation:

1. Research Center for Emerging Computing Technologies (RCECT), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan

2. Faculty of Physics, National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan

Abstract

Speed is the key to further advances in technology. For example, quantum technologies, such as quantum computing, require fast manipulations of quantum systems in order to overcome the effect of decoherence. However, controlling the speed of quantum dynamics is often very difficult due to both the lack of a simple scaling property in the dynamics and the infinitely large parameter space to be explored. Therefore, protocols for speed control based on understanding of the dynamical properties of the system, such as non-trivial scaling property, are highly desirable. Fast-forward scaling theory (FFST) was originally developed to provide a way to accelerate, decelerate, stop and reverse the dynamics of quantum systems. FFST has been extended in order to accelerate quantum and classical adiabatic dynamics of various systems including cold atoms, internal state of molecules, spins and solid-state artificial atoms. This paper describes the basic concept of FFST and reviews the recent developments and its applications such as fast state-preparations, state protection and ion sorting. We introduce a method, called inter-trajectory travel, recently derived from FFST. We also point out the significance of deceleration in quantum technology. This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shortcuts to adiabaticity: theoretical framework, relations between different methods, and versatile approximations;Journal of Physics B: Atomic, Molecular and Optical Physics;2024-04-22

2. Introduction of Quantum System, Step Potential and Barrier Potential to Class X Students of SMA Budi Utomo Bengkulu City;Aktual: Jurnal Pengabdian Kepada Masyarakat;2024-01-11

3. Time rescaling of nonadiabatic transitions;SciPost Physics;2023-07-31

4. Fast-forward generation of non-equilibrium steady states of a charged particle under the magnetic field;Progress of Theoretical and Experimental Physics;2023-05-31

5. State-independent adiabatic phase to accelerate the dynamics of quantum harmonic oscillator;PROCEEDINGS OF THE 1ST CONFERENCE ON QUANTUM SCIENCES AND TECHNOLOGY (CONQUEST 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3