Quantum theory only makes sense in Lazare Carnot's participatory engineering thermodynamics, a development of Leibniz's dynamics

Author:

Bristol Terry1ORCID

Affiliation:

1. Institute for Science, Engineering and Public Policy, Portland State University, Portland, OR 97006, USA

Abstract

Feynman insisted ‘no one understands quantum theory’. Yet, experimentalists tell us quantum theory is the most successful theory in history. Quantum theory cannot be understood as a classical mechanical theory since it arose through the ‘interpolation’ of two highly successful but complementary classical mechanics: Newtonian particle mechanics and Maxwellian wave mechanics. The two-slit experiment illustrates that what is experienced depends on choice of experimental set-up. Quantum theory is properly understood within the more general framework of engineering thermodynamics. In Part One, I point to four essential characteristics of quantum theory that cannot be understood in any framework defined by the classical mechanical presuppositions of symmetry and conservation. These four characteristics are the participatory, the complementary, the indeterminate and the new non-commutative geometry. In Part Two, articulating engineering thermodynamics, I note there are two histories and two formulations of thermodynamics: Carnot's engineering thermodynamics and the ‘rational mechanical’ tradition of Clausius-Boltzmann. These four essential characteristics of quantum theory are also characteristics of engineering thermodynamics. In Part Three, I trace the precursors of Lazare Carnot's engineering thermodynamics to earlier insights of Huygens, d'Alembert, Leibniz and the Bernoullis. Leibniz brought these forth in his meta-paradigm shift from Statics to Dynamics. This article is part of the theme issue ‘Thermodynamics 2.0: Bridging the natural and social sciences (Part 2)’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference52 articles.

1. The Character of Physical Law

2. Causality and Complementarity

3. Popper K. 2002 Conjectures and refutations: the growth of scientific knowledge. London, UK: Routledge Classics.

4. Atkins P. 1984 The second law, scientific American books, pp. 6-7. New York, NY: W. H. Freeman & Co.

5. Energy, the Subtle Concept

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3