Liquid/liquid displacement in a vibrating capillary

Author:

Vorobev Anatoliy1ORCID,Prokopev Sergei2,Lyubimova Tatyana23

Affiliation:

1. Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK

2. CFD Laboratory, Institute of Continuous Media Mechanics, Perm 614013, Russia

3. Theoretical Physics Department, Perm State University, Perm 614990, Russia

Abstract

Mechanical vibrations can alter static and dynamic distributions of fluids in porous matrices. A popular theory that explains non-destructive changes in fluids percolation induced by vibrations involves elasticity of a solid matrix and compressibility of fluids. Owing to strong damping, elastic and acoustic deformations always remain bounded to narrow zones (a few centimetres) near the source of vibrations. However, field trials prove the existence of the effects that are induced by vibrations in geological reservoirs on a longer scale (100 m). In this study, we develop a non-elastic theory, assessing the time-averaged effects induced by small-amplitude high-frequency vibrations. We examine the immiscible liquid/liquid displacement flows in a capillary (which is a building element of a porous matrix) subjected to translational vibrations. We find that strong-enough vibrations alter the shapes of menisci and change the rates of displacement flows. We find that vibrations slow down or even stop the displacement flows (which is contrary to a common expectation that vibrations help to release fluids from a porous matrix). This article is part of the theme issue ‘New trends in pattern formation and nonlinear dynamics of extended systems’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of vibration on droplet dynamics in a three-dimensional porous medium;Physics of Fluids;2023-07-01

2. Introduction to ‘New trends in pattern formation and nonlinear dynamics of extended systems’;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3