A novel multi-branch architecture for state of the art robust detection of pathological phonocardiograms

Author:

Duggento Andrea1ORCID,Conti Allegra1,Guerrisi Maria1,Toschi Nicola12

Affiliation:

1. Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy

2. Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA

Abstract

Heart auscultation is an inexpensive and fundamental technique to effectively diagnose cardiovascular disease. However, due to relatively high human error rates even when auscultation is performed by an experienced physician, and due to the not universal availability of qualified personnel, e.g. in developing countries, many efforts are made worldwide to propose computational tools for detecting abnormalities in heart sounds. The large heterogeneity of achievable data quality and devices, the variety of possible heart pathologies, and a generally poor signal-to-noise ratio make this problem very challenging. We present an accurate classification strategy for diagnosing heart sounds based on (1) automatic heart phase segmentation, (2) state-of-the art filters drawn from the field of speech synthesis (mel-frequency cepstral representation) and (3) an ad hoc multi-branch, multi-instance artificial neural network based on convolutional layers and fully connected neuronal ensembles which separately learns from each heart phase hence implicitly leveraging their different physiological significance. We demonstrate that it is possible to train our architecture to reach very high performances, e.g. an area under the curve of 0.87 or a sensitivity of 0.97. Our machine-learning-based tool could be employed for heartsound classification, especially as a screening tool in a variety of situations including telemedicine applications. This article is part of the theme issue ‘Advanced computation in cardiovascular physiology: new challenges and opportunities’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning for Heart Sound Analysis: A Literature Review;2023-09-17

2. Automatic pavement texture recognition using lightweight few-shot learning;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-07-17

3. A Computer-Aided Heart Valve Disease Diagnosis System Based on Machine Learning;Journal of Healthcare Engineering;2023-01-23

4. PCG signal classification using a hybrid multi round transfer learning classifier;Biocybernetics and Biomedical Engineering;2023-01

5. Advanced computation in cardiovascular physiology: new challenges and opportunities;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3