On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions

Author:

Bandeira Afonso S.1,Maillard Antoine1,Nickl Richard2ORCID,Wang Sven3

Affiliation:

1. Department of Mathematics, ETH Zürich, Zurich, Switzerland

2. Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK

3. Institute for Data, Systems and Society, MIT, Cambridge, MA, USA

Abstract

We exhibit examples of high-dimensional unimodal posterior distributions arising in nonlinear regression models with Gaussian process priors for which Markov chain Monte Carlo (MCMC) methods can take an exponential run-time to enter the regions where the bulk of the posterior measure concentrates. Our results apply to worst-case initialized (‘cold start’) algorithms that are local in the sense that their step sizes cannot be too large on average. The counter-examples hold for general MCMC schemes based on gradient or random walk steps, and the theory is illustrated for Metropolis–Hastings adjusted methods such as preconditioned Crank–Nicolson and Metropolis-adjusted Langevin algorithm.This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference63 articles.

1. Spin glass VI: spin glass as cornucopia;Anderson PW;Phys. Today,1989

2. Information, Physics, and Computation

3. Statistical physics of inference: thresholds and algorithms

4. Algorithmic thresholds for tensor PCA

5. Ben Arous G Wein AS Zadik I. 2020 Free energy wells and overlap gap property in sparse PCA. In Conf. on Learning Theory Graz Austria 9–12 July 2020 pp. 479–482. PMLR.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Less Interaction with Forward Models in Langevin Dynamics: Enrichment and Homotopy;SIAM Journal on Applied Dynamical Systems;2024-07-15

2. A special issue on Bayesian inference: challenges, perspectives and prospects;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3