Computational modelling of the crushing of carbon fibre-reinforced polymer composites

Author:

Falzon Brian G.12ORCID

Affiliation:

1. School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia

2. Advanced Composites Research Group, School of Mechanical and Aerospace Engineering, Queen's University Belfast, BelfastBT9 5AH, UK

Abstract

The use of lightweight carbon fibre-reinforced polymer (CFRP) composites in transportation vehicles has necessitated the need to guarantee that these new materials and their structures are able to deliver a sufficient level of crashworthiness to ensure passenger safety. Unlike their metallic counterparts, which absorb energy primarily through plastic deformation, CFRPs absorb energy through a complex interaction of damage mechanisms involving matrix (polymer) cracking, fibre/matrix debonding, fibre pull-out/kinking/fracture, delamination and inter/intralaminar friction. CFRP is primarily deployed as a laminate and can potentially deliver a higher specific energy absorption than metals. Translating this capability to a structural scale requires careful design and is dependent on geometry, fibre architecture, laminate stacking sequence and damage initiation strategies for optimal uniform crushing. Consequently, the design of crashworthy CFRP structures currently entails extensive physical testing which is expensive and time consuming. This paper reports on progress and challenges in the development of a finite-element computational capability for simulating the crushing of composites for crashworthiness assessments, with the aim of reducing the burden of physical testing. It addresses the ‘tyranny of scales’ in modelling structures constructed of CFRP composites. Intrinsic to this capability is the acquisition of reliable material data for the damage model, in particular interlaminar and intralaminar fracture toughness values. While quasi-static values can be obtained with a reasonable level of confidence, results achieved through dynamic testing are still the subject of debate and the relationship between fracture toughness and strain rate has yet to be satisfactorily resolved. This article is part of the theme issue ‘Nanocracks in nature and industry’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3