The Galerkin-truncated Burgers equation: crossover from inviscid-thermalized to Kardar–Parisi–Zhang scaling

Author:

Cartes C.1,Tirapegui E.2ORCID,Pandit R.3,Brachet M.4ORCID

Affiliation:

1. Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile

2. Departamento de Física, Universidad de Chile, Santiago, Chile

3. Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India

4. Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris 75005, France

Abstract

The one-dimensional Galerkin-truncated Burgers equation, with both dissipation and noise terms included, is studied using spectral methods. When the truncation-scale Reynolds number R min is varied, from very small values to order 1 values, the scale-dependent correlation time τ ( k ) is shown to follow the expected crossover from the short-distance τ ( k ) k 2 Edwards–Wilkinson scaling to the universal long-distance Kardar–Parisi–Zhang scaling τ ( k ) k 3 / 2 . In the inviscid limit, R min , we show that the system displays another crossover to the Galerkin-truncated inviscid-Burgers regime that admits thermalized solutions with τ ( k ) k 1 . The scaling forms of the time-correlation functions are shown to follow the known analytical laws and the skewness and excess kurtosis of the interface increments distributions are characterized. This article is part of the theme issue ‘Scaling the turbulence edifice (part 2)’.

Funder

Agence Nationale de la Recherche

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference51 articles.

1. On some statistical properties of hydrodynamical and magneto-hydrodynamical fields

2. Statistical hydromechanics and functional calculus;Hopf E;J. Ration. Mech. Anal.,1952

3. On the Statistical Mechanics of an Adiabatically Compressible Fluid

4. Helical turbulence and absolute equilibrium

5. Orszag S. 1977 Statistical theory of turbulence. In Les Houches 1973: fluid dynamics (eds R Balian JL Peube). New York NY: Gordon and Breach.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3