A multiple-relaxation-time collision model by Hermite expansion

Author:

Shan Xiaowen12ORCID,Li Xuhui2,Shi Yangyang2

Affiliation:

1. Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China

2. Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China

Abstract

The Bhatnagar–Gross–Krook (BGK) single-relaxation-time collision model for the Boltzmann equation serves as the foundation of the lattice BGK (LBGK) method developed in recent years. The description of the collision as a uniform relaxation process of the distribution function towards its equilibrium is, in many scenarios, simplistic. Based on a previous series of papers, we present a collision model formulated as independent relaxations of the irreducible components of the Hermite coefficients in the reference frame moving with the fluid. These components, corresponding to the irreducible representation of the rotation group, are the minimum tensor components that can be separately relaxed without violating rotation symmetry. For the 2nd, 3rd and 4th moments, respectively, two, two and three independent relaxation rates can exist, giving rise to the shear and bulk viscosity, thermal diffusivity and some high-order relaxation process not explicitly manifested in the Navier–Stokes-Fourier equations. Using the binomial transform, the Hermite coefficients are evaluated in the absolute frame to avoid the numerical dissipation introduced by interpolation. Extensive numerical verification is also provided. This article is part of the theme issue ‘Progress in mesoscale methods for fluid dynamics simulation’.

Funder

Guangdong Science and Technology Department

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference26 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3