Affiliation:
1. Institut für Analysis und Numerik, Westfälische Wilhelms-Universität Münster, Germany
Abstract
We study the evolution of solutions to the two-dimensional Euler equations whose vorticity is sharply concentrated in the Wasserstein sense around a finite number of points. Under the assumption that the vorticity is merely
L
p
integrable for some
p
>
2
, we show that the evolving vortex regions remain concentrated around points, and these points are close to solutions to the Helmholtz–Kirchhoff point vortex system.
This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Reference33 articles.
1. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen;Helmholtz H;J. Mathematik,1858
2. Kirchhoff GR. 1876 Vorlesungen über mathematische Physik. Leipzig, Germany: Teubner.
3. Euler evolution for singular initial data and vortex theory
4. Long Time Evolution of Concentrated Euler Flows with Planar Symmetry
5. Concentrated Euler flows and point vortex model;Caprini L;Rend. Mat. Appl. (7),2015
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the dynamics of vortices in viscous 2D flows;Mathematische Annalen;2023-01-25
2. Editorial: Mathematical problems in physical fluid dynamics: part II;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-05-09