Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems

Author:

Guan Jingcheng1ORCID,Lu You2,Sen Kakali2,Abdul Nasir Jamal1ORCID,Desmoutier Alec W.1,Hou Qing13,Zhang Xingfan1ORCID,Logsdail Andrew J.4ORCID,Dutta Gargi15,Beale Andrew M.16ORCID,Strange Richard W.7,Yong Chin2ORCID,Sherwood Paul8,Senn Hans M.9,Catlow C. Richard A.146ORCID,Keal Thomas W.2ORCID,Sokol Alexey A.1

Affiliation:

1. Department of Chemistry, University College London, London WC1H 0AJ, UK

2. STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK

3. Institute of Photonic Chips, University of Shanghai for Science of Technology, Shanghai 201512, People’s Republic of China

4. Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK

5. Department of Physics, Balurghat College, Balurghat 733101, West Bengal, India

6. Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, UK

7. School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK

8. Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK

9. School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK

Abstract

Vibrational spectroscopy is one of the most well-established and important techniques for characterizing chemical systems. To aid the interpretation of experimental infrared and Raman spectra, we report on recent theoretical developments in the ChemShell computational chemistry environment for modelling vibrational signatures. The hybrid quantum mechanical and molecular mechanical approach is employed, using density functional theory for the electronic structure calculations and classical forcefields for the environment. Computational vibrational intensities at chemical active sites are reported using electrostatic and fully polarizable embedding environments to achieve more realistic vibrational signatures for materials and molecular systems, including solvated molecules, proteins, zeolites and metal oxide surfaces, providing useful insight into the effect of the chemical environment on the signatures obtained from experiment. This work has been enabled by the efficient task-farming parallelism implemented in ChemShell for high-performance computing platforms.  This article is part of a discussion meeting issue ‘Supercomputing simulations of advanced materials’.

Funder

Engineering and Physical Sciences Research Council

UK Research and Innovation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supercomputing modelling of advanced materials: preface;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-05-22

2. Multiscale QM/MM modelling of catalytic systems with ChemShell;Physical Chemistry Chemical Physics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3